Не работает мышка что делать. Почему не работает мышка на ноутбуке. Не работает беспроводная мышка. Почему не работает клавиатура. Почему не работает клавиатура на компьютере. Не работают некоторые кнопки клавиатуры. Как обшить ванну панелями. Скажите чем обшить стены в ванной. Обшить ванну пластиком фото. Приложения для android бесплатно. Скачать лучшие приложения для android. Приложение для планшетов android. Горнолыжные курорты финляндии. Лучшие горнолыжные курорты финляндии цены. Лучшие курорты финляндии. Как лечить воспаление легких. Воспаление легких симптомы основные. Воспаление легких лечение. Уроки по python. Учим python с нуля быстро. Как изучать быстро язык Python. Проблемы с сердцем симптомы. Основные признаки проблем с сердцем. Проблемы с клапаном сердца.

Regulation of p53 activity through lysine methylation

Sergei Chuikov, Julia K. Kurash, Jonathan R. Wilson, Bing Xiao, Neil Justin, Gleb S. Ivanov, Kristine McKinney, Paul Tempst, Carol Prives, Steven J. Gamblin, Nickolai A. Barlev & Danny Reinberg

 

NATURE, VOL 432, 18 NOVEMBER 2004, 353–360

 

Читать статью



ABSTRACT

p53 is a tumour suppressor that regulates the cellular response to genotoxic stresses. p53 is a short-lived protein and its activity is regulated mostly by stabilization via different post-translational modifications. Here we report a novel mechanism of p53 regulation through lysine methylation by Set9 methyltransferase. Set9 specifically methylates p53 at one residue within the carboxyl-terminus regulatory region. Methylated p53 is restricted to the nucleus and the modification positively affects its stability. Set9 regulates the expression of p53 target genes in a manner dependent on the p53-methylation site. The crystal structure of a ternary complex of Set9 with a p53 peptide and the cofactor product S-adenosyl-L-homocysteine (AdoHcy) provides the molecular basis for recognition of p53 by this lysine methyltransferase.


REFERENCES

1. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

2. Wang, H. et al. Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol. Cell 8, 1207–1217 (2001).

3. Nishioka, K. et al. Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev. 16, 479–489 (2002).

4. Appella, E. & Anderson, C. W. Post-translational modifications and activation of p53 by genotoxic stresses. Eur. J. Biochem. 268, 2764–2772 (2001).

5. Shieh, S. Y., Ikeda, M., Taya, Y. & Prives, C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91, 325–334 (1997).

6. Momand, J., Wu, H. H. & Dasgupta, G. MDM2—master regulator of the p53 tumor suppressor protein. Gene 242, 15–29 (2000).

7. Brooks, C. L. & Gu,W. Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr. Opin. Cell Biol. 15, 164–171 (2003).

8. Li,M., Luo, J., Brooks, C. L. & Gu,W. Acetylation of p53 inhibits its ubiquitination byMdm2. J. Biol. Chem. 277, 50607–50611 (2002).

9. Luo, J. et al. Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proc. Natl Acad. Sci. USA 101, 2259–2264 (2004).

10. Gu,W. & Roeder, R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 Cterminal domain. Cell 90, 595–606 (1997).

11. Barlev, N. A. et al. Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol. Cell 8, 1243–1254 (2001).

12. Gu,W., Luo, J., Brooks, C. L., Nikolaev, A. Y. & Li,M. Dynamics of the p53 acetylation pathway. Nov. Found. Symp. 259, 197–205 (2004).

13. Gostissa, M. et al. Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. Embo J. 18, 6462–6471 (1999).

14. Kwek, S. S., Derry, J., Tyner, A. L., Shen, Z. & Gudkov, A. V. Functional analysis and intracellular localization of p53 modified by SUMO-1. Oncogene 20, 2587–2599 (2001).

15. Rodriguez,M. S. et al. SUMO-1 modification activates the transcriptional response of p53. Embo J. 18, 6455–6461 (1999).

16. Kouskouti, A., Scheer, E., Staub, A., Tora, L. & Talianidis, I. Gene-specific modulation of TAF10 function by SET9-mediated methylation. Mol. Cell 14, 175–182 (2004).

17. Xiao, B. et al. Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature 421, 652–656 (2003).

18. Grand, R. J. et al. The high levels of p53 present in adenovirus early region 1-transformed human cells do not cause up-regulation of MDM2 expression. Virology 210, 323–334 (1995).

19. Tachibana, M., Sugimoto, K., Fukushima, T. & Shinkai, Y. SET domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J. Biol. Chem. 276, 25309–25317 (2001).

20. Otwinowski, Z. & Minor,W. in Data Collection and Processing (eds Sawyer, L., Isaacs, N. & Bailey, S.) 552–562 (SERC Daresbury Laboratory, Warrington, 1993).

21. CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

22. Jones, T. A., Zhou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

Прочитано 1751 раз
Оцените материал
(0 голосов)
Опубликовано в СТАТЬИ
Авторизуйтесь, чтобы получить возможность оставлять комментарии

ПОДПИШИТЕСЬ НА НОВОСТИ

Управление научных исследований СПбГТИ (ТУ)

Горячие новости

Приборное оснащение лаборатории

Rambler's Top100
//'+ 'Рейтинг@Mail.ru<\/a><\/p>');})(window,navigator,document);//]]>