Купить новостройку с отделкой. Где купить однокомнатную квартиру в новостройке? Купить новостройку недорого. Оценка стоимости недвижимости. Какая рыночная оценка недвижимости? Принципы оценки недвижимости. Теплый пол своими руками. Как сделать теплый пол в доме. Монтаж водяного теплого пола. Не включается ноутбук. Скажите почему не включается ноутбук. Ноутбук включается и сразу выключается. Быстрый кредит наличными. Где быстро взять кредит без справок. Оформить быстрый кредит. Топ wow сервера. Где скачать последний клиент wow? Самый лучший сервера world of warcraft. Ленточная пилорама цена. Ленточная пилорама своими руками чертежи. Скачать чертежи ленточной пилорамы. Аренда квартир без посредников. Длительная аренда квартир без посредников и прочих. Аренда однокомнатной квартиры.

Itch: a HECT-type E3 ligase regulating immunity, skin and cancer (Review)

G Melino, E Gallagher, RI Aqeilan, R Knight, A Peschiaroli, M Rossi, F Scialpi, M Malatesta, L Zocchi, G Browne, A Ciechanover and F Bernassola

 

Cell Death and Differentiation (2008) 15, 1103–1112

 

Читать статью


ABSTRACT

The HECT-type E3 ubiquitin ligase (E3) Itch is absent in the non-agouti-lethal 18H or Itchy mice, which develop a severe immunological disease, including lung and stomach inflammation and hyperplasia of lymphoid and hematopoietic cells. The involvement of Itch in multiple signaling pathways and pathological conditions is presently an area of extensive scientific interest. This review aims to bring together a growing body of work exploring Itch-regulated biological processes, and to highlight recent discoveries on the regulatory mechanisms modulating its catalytic activity and substrate recognition capability. Our contribution is also an endeavor to correlate Itch substrate specificity with the pathological defects manifested by the mutant Itchy mice.



REFERENCES

1. Perry WL, Hustad CM, Swing DA, O’Sullivan TN, Jenkins NA, Copeland NG. The itchy locus encodes a novel ubiquitin protein ligase that is disrupted in 18H mice. Nat Genet 1998; 18: 143–146.

2. Schwarz SE, Rosa JL, Scheffner M. Characterization of human hect domain family members and their interaction with UbcH5 and UbcH7. J Biol Chem 1998; 273: 12148–12154.

3. Huibregtse JM, Scheffner M, Beaudenon S, Howley PM. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc Natl Acad Sci USA 1995; 92: 5249.

4. Qiu L, Joazeiro C, Fang N, Wang H-Y, Elly C, Altman Y et al. Recognition and ubiquitination of Notch by Itch, a hect-type E3 ubiquitin ligase. J Biol Chem 2000; 275: 35734–35737.

5. Marchese A, Raiborg C, Santini F, Keen JH, Stenmark H, Benovic JL. The E3 ubiquitin ligase AIP4 mediates ubiquitination and sorting of the G protein-coupled receptor CXCR4. Dev Cell 2003; 5: 709–722.

6. Wegierski T, Hill K, Schaefer M, Walz G. The HECT ubiquitin ligase AIP4 regulates the cell surface expression of select TRP channels. EMBO J 2006; 25: 5659–5669.

7. Courbard JR, Fiore F, Ade´ laı¨de J, Borg JP, Birnbaum D, Ollendorff V. Interaction between two ubiquitin-protein isopeptide ligases of different classes, CBLC and AIP4/ITCH. J Biol Chem 2002; 277: 45267–45275.

8. Oberst A, Malatesta M, Aqeilan RI, Rossi M, Salomoni P, Murillas R et al. The Nedd4- binding partner 1 (N4BP1) protein is an inhibitor of the E3 ligase Itch. Proc Natl Acad Sci USA 2007; 104: 11280–11285.

9. Angers A, Ramjaun AR, McPherson PS. The HECT domain ligase itch ubiquitinates endophilin and localizes to the trans-Golgi network and endosomal system. J Biol Chem 2004; 279: 11471–11479.

10. Fang D, Elly C, Gao B, Fang N, Altman Y, Joazeiro C et al. Dysregulation of T lymphocyte function in itchy mice: a role for Itch in TH2 differentiation. Nat Immunol 2002; 3: 281–287.

11. Parravicini V, Field AC, Tomlinson PD, Basson MA, Zamoyska R. Itch/ {alpha}{beta} and {gamma}{delta} T cells independently contribute to autoimmunity in Itchy mice. Blood 2008; e-pub ahead of print.

12. Bai Y, Yang C, Hu K, Elly C, Liu YC. Itch E3 ligase-mediated regulation of TGF-beta signaling by modulating smad2 phosphorylation. Mol Cell 2004; 15: 825–831.

13. Fang D, Kerppola TK. Ubiquitin-mediated fluorescence complementation reveals that Jun ubiquitinated by Itch/AIP4 is localized to lysosomes. Proc Natl Acad Sci USA 2004; 101: 4782–14787.

14. Li B, Tournier C, Davis RJ, Flavell RA. Regulation of IL-4 expression by the transcription factor JunB during T helper cell differentiation. EMBO J 1999; 18: 420–432.

15. Hartenstein B, Teurich S, Hess J, Schenkel J, Schorpp-Kistner M, Angel P. Th2 cell-specific cytokine expression and allergen-induced airway inflammation depend on JunB. EMBO J 2002; 21: 6321–6329.

16. Mueller DL. E3 ubiquitin ligases as T cell anergy factors. Nat Immunol 2004; 5: 883–890.

17. Heissmeyer V, Macia´n F, Im SH, Varma R, Feske S, Venuprasad K et al. Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. Nat Immunol 2004; 5: 255–265.

18. Venuprasad K, Elly C, Gao M, Salek-Ardakani S, Harada Y, Luo JL et al. Convergence of Itch-induced ubiquitination with MEKK1-JNK signaling in Th2 tolerance and airway inflammation. J Clin Invest 2006; 116: 1117–1126.

19. Osborne BA, Minter LM. Notch signaling during peripheral T-cell activation and differentiation. Nat Rev Immunol 2007; 7: 64–75.

20. Jenkinson EJ, Jenkinson WE, Rossi SW, Anderson G. The thymus and T-cell commitment: the right niche for Notch? Nat Rev Immunol 2006; 6: 551–555.

21. McGill MA, McGlade CJ. Mammalian numb proteins promote Notch1 receptor ubiquitination and degradation of the Notch1 intracellular domain. J Biol Chem 2003; 278: 23196–23203.

22. Chastagner P, Israe¨ l A, Brou C. Itch/AIP4 mediates Deltex degradation through the formation of K29-linked polyubiquitin chains. EMBO Rep 2006; 7: 1147–1153.

23. Matesic LE, Haines DC, Copeland NG, Jenkins NA. Itch genetically interacts with Notch1 in a mouse autoimmune disease model. Hum Mol Genet 2006; 15: 3485–3497.

24. Sade H, Krishna S, Sarin A. The anti-apoptotic effect of Notch-1 requires p56lckdependent, Akt/PKB-mediated signaling in T cells. J Biol Chem 2004; 279: 2937–2944.

25. Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003; 113: 685–700.

26. Rubtsov YP, Rudensky AI. TGF signalling in control of T-cell-mediated self-reactivity. Nat Rev Immun 2007; 7: 443–453.

27. Venuprasad K, Huang H, Harada Y, Elly C, Subramaniam M, Spelsberg T et al. The E3 ubiquitin ligase Itch regulates expression of transcription factor Foxp3 and airway inflammation by enhancing the function of transcription factor TIEG1. Nat Immunol 2008; 9: 245–253.

28. Melino G, De Laurenzi V, Vousden KH. p73: Friend or foe in tumorigenesis. Nat Rev Cancer 2002; 2: 605–615.

29. Melino G, Lu X, Gasco M, Crook T, Knight RA. Functional regulation of p73 and p63: development and cancer. Trends Biochem Sci 2003; 28: 663–670.

30. Irwin MS, Kondo K, Marin MC, Cheng LS, Hahn WC, Kaelin Jr WG. Chemosensitivity linked to p73 function. Cancer Cell 2003; 3: 403–410.

31. Bergamaschi D, Gasco M, Hiller L, Sullivan A, Syed N, Trigiante G et al. p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis. Cancer Cell 2003; 3: 387–402.

32. Gressner O, Schilling T, Lorenz K, Schulze Schleithoff E, Koch A, Schulze-Bergkamen H et al. TAp63 alpha induces apoptosis by activating signaling via death receptors and mitochondria. EMBO J 2005; 24: 2458–2471.

33. Flores ER, Sengupta S, Miller JB, Newman JJ, Bronson R, Crowley D et al. Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 2005; 7: 363–373.

34. Rossi M, De Laurenzi V, Munarriz E, Green DR, Liu YC, Vousden KH et al. The ubiquitinprotein ligase Itch regulates p73 stability. EMBO J 2005; 24: 836–848.

35. Rossi M, Aqeilan RI, Neale M, Candi E, Salomoni P, Knight RA et al. The E3 ubiquitin ligase Itch controls the protein stability of p63. Proc Natl Acad Sci USA 2006; 103: 12753–12758.

36. Flores ER, Tsai KY, Crowley D, Sengupta S, Yang A, McKeon F et al. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 2002; 416: 560–564.

37. Hansen TM, Rossi M, Roperch JP, Ansell K, Simpson K, Taylor D et al. Itch inhibition regulates chemosensitivity in vitro. Biochem Biophys Res Commun 2007; 361: 33–36.

38. Lissy NA, Davis PK, Irwin M, Kaelin WG, Dowdy SF. A common E2F-1 and p73 pathway mediates cell death induced by TCR activation. Nature 2000; 407: 642–645.

39. Irwin M, Marin MC, Phillips AC, Seelan RS, Smith DI, Liu W et al. Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 2000; 407: 645–648.

40. De Laurenzi VD, Catani MV, Terrinoni A, Corazzari M, Melino G, Costanzo A et al. Additional complexity in p73: induction by mitogens in lymphoid cells and identification of two new splicing variants epsilon and zeta. Cell Death Differ 1999; 6: 389–390.

41. Wan YY, DeGregori J. The survival of antigen-stimulated T cells requires NFkappaBmediated inhibition of p73 expression. Immunity 2003; 18: 331–342.

42. Varadhachary AS, Perdow SN, Hu C, Ramanarayanan M, Salgame P. Differential ability of T cell subsets to undergo activation-induced cell death. Proc Natl Acad Sci USA 1997; 94: 5778–5783.

43. Chang L, Kamata H, Solinas G, Luo JL, Maeda S, Venuprasad K et al. The E3 ubiquitin ligase itch couples JNK activation to TNF alpha-induced cell death by inducing c-FLIP(L) turnover. Cell 2006; 124: 601–613.

44. Shembade N, Harhaj NS, Parvatiyar K, Copeland NG, Jenkins NA, Matesic LE et al. The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20. Nat Immunol 2008; 9: 254–262.

45. Candi E, Schmidt R, Melino G. The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol 2005; 6: 328–340.

46. Candi E, Rufini A, Terrinoni A, Dinsdale D, Ranalli M, Paradisi A et al. Differential roles of p63 isoforms in epidermal development: selective genetic complementation in p63 null mice. Cell Death Differ 2006; 13: 1037–1047.

47. Blanpain C, Lowry WE, Pasolli HA, Fuchs E. Canonical notch signaling functions as a commitment switch in the epidermal lineage. Genes Dev 2006; 20: 3022–3035.

48. Sundvall M, Korhonen A, Paatero I, Gaudio E, Melino G, Croce CM et al. Isoform-specific monoubiquitination, endocytosis, and degradation of alternatively spliced ErbB4 isoforms. Proc Natl Acad Sci USA 2008; 105: 4162–4167.

49. Gao M, Labuda T, Xia Y, Gallagher E, Fang D, Liu YC et al. Jun turnover is controlled through JNK-dependent phosphorylation of the E3 ligase Itch. Science 2004; 306: 271–275.

50. Gallagher E, Gao M, Liu YC, Karin M. Activation of the E3 ubiquitin ligase Itch through a phosphorylation-induced conformational change. Proc Natl Acad Sci USA 2006; 103: 1717–1722.

51. Verdecia MA, Joazeiro CA, Wells NJ, Ferrer JL, Bowman ME, Hunter T et al. Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. Mol Cell 2003; 11: 249–259.

52. Dong C, Yang DD, Wysk M, Whitmarsh AJ, Davis RJ, Flavell RA. Defective T cell differentiation in the absence of Jnk1. Science 1998; 282: 2092–2095.

53. Gallagher E, Enzler T, Matsuzawa A, Anzelon-Mills A, Otero D, Holzer R et al. Kinase MEKK1 is required for CD40-dependent activation of the kinases Jnk and p38, germinal center formation, B cell proliferation and antibody production. Nat Immunol 2007; 8: 57–63.

54. Yang C, Zhou W, Jeon M-S, Demydenko D, Harada Y, Zhou H et al. Negative regulation of the E3 ubiquitin ligase itch via Fyn-mediated tyrosine phosphorylation. Mol Cell 2006; 21: 135–141.

55. Mouchantaf R, Azakir BA, McPherson PS, Millard SM, Wood SA, Angers A. The ubiquitin ligase itch is auto-ubiquitylated in vivo and in vitro but is protected from degradation by interacting with the deubiquitylating enzyme FAM/USP9X. J Biol Chem 2006; 281: 38738–38747.

56. Shearwin-Whyatt L, Dalton HE, Foot N, Kumar S. Regulation of functional diversity within the Nedd4 family by accessory and adaptor proteins. Bioassays 2006; 28: 617–628.

57. Jolliffe CN, Harvey KF, Haines BP, Parasivam G, Kumar S. Identification of multiple proteins expressed in murine embryos as binding partners for the WW domains of the ubiquitin-protein ligase Nedd4. Biochem J 2000; 351: 557–565.

58. Harvey KF, Shearwin-Whyatt LM, Fotia A, Parton RG, Kumar S. N4WBP5, a potential target for ubiquitination by the Nedd4 family of proteins, is a novel Golgi-associated protein. J Biol Chem 2002; 277: 9307–93017.

59. Hettema EH, Valdez-Taubas J, Pelham HR. binds the ubiquitin ligase Rsp5 and mediates the ubiquitination of transmembrane proteins. EMBO J 2004; 23: 1279–1288.

60. Oliver PM, Cao X, Worthen GS, Shi P, Briones N, MacLeod M et al. Ndfip1 protein promotes the function of itch ubiquitin ligase to prevent T cell activation and T-helper 2 cellmediated inflammation. Immunity 2006; 25: 929–940.

61. Di Marcotullio L, Ferretti E, Greco A, De Smaele E, Po A, Sico MA et al. Numb is a suppressor of Hedgehog signalling and targets Gli1 for Itch-dependent ubiquitination. Nat Cell Biol 2006; 8: 1415–1423.

62. Shcherbik N, Kumar S, Haines DS. Substrate proteolysis is inhibited by dominant-negative Nedd4 and Rsp5 mutants harboring alterations in WW domain 1. J Cell Sci 2002; 115: 1041–1048.

63. Henry PC, Kanelis V, O’Brien MC, Kim B, Gautschi I, Forman-Kay J et al. Affinity and specificity of interactions between Nedd4 isoforms and the epithelial Na+ channel. J Biol Chem 2003; 278: 20019–20028.

Прочитано 1918 раз
Оцените материал
(0 голосов)
Опубликовано в СТАТЬИ
Авторизуйтесь, чтобы получить возможность оставлять комментарии

ПОДПИШИТЕСЬ НА НОВОСТИ

Управление научных исследований СПбГТИ (ТУ)

Горячие новости

Приборное оснащение лаборатории

Rambler's Top100
//'+ 'Рейтинг@Mail.ru<\/a><\/p>');})(window,navigator,document);//]]>