ABSTRACT
The p53 tumor suppressor protein, first discovered in 1979, acts as a major node in a complex signalling pathway evolved to sense a broad range of cellular stresses such as DNA damage, oncogene activation, viral infection and ribonucleotide depletion. The p53 network, normally switched ‘off’, is activated by such cellular stresses that can alter normal cell cycle progression or induce mutations of the genome leading to oncogenic transformation. Activated p53 protein stops the cell cycle or, in many cases, switches ‘on’ the programmed cell death (apoptosis) pathways forcing damaged cells to commit suicide.1 The p53 protein therefore prevents the multiplication of stressed cells that are more likely than undamaged cells both to contain mutations and exhibitabnormal cellular growth. Hence, the p53 protein, the guardian of the genome, is a critical inhibitor of tumour development explaining why it is the most frequently mutated gene in human cancers.
REFERENCES
1. Benchimol S (2001) Cell Death Differ. 8: 1049–10512. Choisy-Rossi C and Yonish-Rouach E (1998) Cell Death Differ. 5: 129–131
3. Vogelstein B et al. (2000) Nature 408: 307–310
4. Vousden KH and Lu X (2002) Nat. Rev. Cancer 2: 594–604
5. El-Deiry WS (2001) Cell Death Differ. 8: 1066–1075
6. El-Deiry WS et al. (1993) Cell 75: 817–825
7. Funk WD et al. (1992) Mol. Cell. Biol. 12: 2866–2871
8. Bourdon JC et al. (1997) Oncogene 14: 85–94
9. Bourdon JC (2002) J. Cell. Biol. 158: 235–246
10. Jimenez GS et al. (2000) Nat. Genet. 26: 37–43
11. Harper JW et al. (1993) Cell 75(4): 805–816
12. Castedo M et al. (2002) Cell Death Differ. 9: 1287–1293
13. Miyashita T and Reed JC (1995) Cell 80: 293–299
14. Muller M et al. (1998) J. Exp. Med. 188: 2033–2045
15. Oda E et al. N (2000) Science 288: 1053–1058
16. Oda K et al. Y (2000) Cell 102: 849–862
17. Munsch D et al. (2000) J. Biol. Chem. 275: 3867–3872
18. Nakano K and Vousden KH (2001) Mol. Cell 7: 683–694
19. Yu J et al. (2001) Mol. Cell 7: 673–682
20. Klocke BJ et al. (2002) Cell Death Differ. 9: 1063–1068
21. Santamaria AB et al. (2002) Cell Death Differ. 9: 549–560
22. Kaufman R J (1999) Genes Dev. 13: 1211–1233
23. Ferri KF and Kroemer G (2001) Nat. Cell Biol. 3: E255–E263
24. Ichas F et al. (1997). Cell 89: 1145–1153
25. Ichas F and Mazat JP (1998) Biochim. Biophys. Acta. 1366: 33–50
26. Szalai G et al. (1999) EMBO J. 18: 6349–6361
27. Jin S et al. (2003) Genes Dev. 17: 359–367
28. Fortin A et al. (2001) J. Cell Biol. 155: 207–216
29. Moroni MC et al. (2001) Nat. Cell Biol. 3: 552–558
30. MacLachlan TK and El-Deiry WS (2002) Proc. Natl. Acad. Sci. USA 99: 9492–9497
31. Sax JK and El-Deiry WS (2003) Cell Death Differ. 10: 413–417
32. Levrero M (1999) Cell Death Differ. 6: 1146–1153
33. Levrero M et al. (2000) J. Cell Sci. 113: 1661–1670
34. Melino G et al. (2002) Nat. Rev. Cancer 2: 605–615
35. Stiewe T and Putzer BM (2002) Cell Death Differ. 9: 237–245
36. Ho J and Benchimol S (2003) Cell Death Differ. 10: 404–408
37. Friedlander P et al. (1996) Mol. Cell. Biol. 16: 4961–4971
38. Ludwig RL et al. (1996) Mol. Cell. Biol. 16: 4952–4960
39. Saller E et al. (1999) EMBO J. 18: 4424–4437
40. Samuels-Lev Y et al. (2001). Mol. Cell 8: 781–794
41. Bergamaschi D et al. (2003) Nat. Genet. 33: 162–167
42. Weber JD and Zambetti GP (2003) Cell Death Differ. 10: 409–412
43. Oren M (2003) Cell Death Differ. 10: 431–442
44. Xu Y (2003) Cell Death Differ. 10: 400–403
45. Bakkenist CJ and Kastan MB (2003) Nature 421: 499–506
46. Banin S et al. (1998) Science 281: 1674–1677
47. Canman CE et al. (1998) Science; 281: 1677–1679
48. Clarke AR and Hollstein M (2003) Cell Death Differ. 10: 443–450