The C-terminus of p63 contains multiple regulatory elements with different functions

WE Straub, TA Weber, B Schafer, E Candi, F Durst, HD Ou, K Rajalingam, G Melino and V Dotsch

 

Cell Death and Disease (2010) 1, e5

 

Читать статью


ABSTRACT

The transcription factor p63 is expressed as at least six different isoforms, of which two have been assigned critical biological roles within ectodermal development and skin stem cell biology on the one hand and supervision of the genetic stability of oocytes on the other hand. These two isoforms contain a C-terminal inhibitory domain that negatively regulates their transcriptional activity. This inhibitory domain contains two individual components: one that uses an internal binding mechanism to interact with and mask the transactivation domain and one that is based on sumoylation. We have carried out an extensive alanine scanning study to identify critical regions within the inhibitory domain. These experiments show that a stretch ofB13 amino acids is crucial for the binding function. Further, investigation of transcriptional activity and the intracellular level of mutants that cannot be sumoylated suggests that sumoylation reduces the concentration of p63. We therefore propose that the inhibitory function of the C-terminal domain is in part due to direct inhibition of the transcriptional activity of the protein and in part due to indirect inhibition by controlling the concentration of p63.



REFERENCES

1. Trink B, Okami K, Wu L, Sriuranpong V, Jen J, Sidransky D. A new human p53 homologue. Nat Med 1998; 4: 747–748.

2. Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dotsch V et al. p63, a p53 homolog at 3q27–29, encodes multiple products with transactivating, death-inducing, and dominantnegative activities. Mol Cell 1998; 2: 305–316.

3. Osada M, Ohba M, Kawahara C, Ishioka C, Kanamaru R, Katoh I et al. Cloning and functional analysis of human p51, which structurally and functionally resembles p53. Nat Med 1998; 4: 839–843.

4. Senoo M, Seki N, Ohira M, Sugano S, Watanabe M, Inuzuka S et al. A second p53- related protein, p73L, with high homology to p73. Biochem Biophys Res Commun 1998; 248: 603–607.

5. Flores ER, Tsai KY, Crowley D, Sengupta S, Yang A, McKeon F et al. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 2002; 416: 560–564.

6. Flores ER, Sengupta S, Miller JB, Newman JJ, Bronson R, Crowley D et al. Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 2005; 7: 363–373.

7. Senoo M, Manis JP, Alt FW, McKeon F. p63 and p73 are not required for the development and p53-dependent apoptosis of T cells. Cancer Cell 2004; 6: 85–89.

8. Keyes WM, Vogel H, Koster MI, Guo X, Qi Y, Petherbridge KM et al. p63 heterozygous mutant mice are not prone to spontaneous or chemically induced tumors. Proc Natl Acad Sci USA 2006; 103: 8435–8440.

9. Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 1999; 398: 714–718.

10. Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 1999; 398: 708–713.

11. Senoo M, Pinto F, Crum CP, McKeon F. p63 Is essential for the proliferative potential of stem cells in stratified epithelia. Cell 2007; 129: 523–536.

12. Suh EK, Yang A, Kettenbach A, Bamberger C, Michaelis AH, Zhu Z et al. p63 protects the female germ line during meiotic arrest. Nature 2006; 444: 624–628.

13. Koster MI, Dai D, Marinari B, Sano Y, Costanzo A, Karin M et al. p63 induces key target genes required for epidermal morphogenesis. Proc Natl Acad Sci USA 2007; 104: 3255–3260.

14. Koster MI, Kim S, Mills AA, DeMayo FJ, Roop DR. p63 is the molecular switch for initiation of an epithelial stratification program. Genes Dev 2004; 18: 126–131.

15. Serber Z, Lai HC, Yang A, Ou HD, Sigal MS, Kelly AE et al. A C-terminal inhibitory domain controls the activity of p63 by an intramolecular mechanism. Mol Cell Biol 2002; 22: 8601–8611.

16. Ozaki T, Naka M, Takada N, Tada M, Sakiyama S, Nakagawara A. Deletion of the COOH-terminal region of p73alpha enhances both its transactivation function and DNAbinding activity but inhibits induction of apoptosis in mammalian cells. Cancer Res 1999; 59: 5902–5907.

17. Huang YP, Wu G, Guo Z, Osada M, Fomenkov T, Park HL et al. Altered sumoylation of p63alpha contributes to the split-hand/foot malformation phenotype. Cell Cycle 2004; 3: 1587–1596.

18. Ghioni P, D0Alessandra Y, Mansueto G, Jaffray E, Hay RT, Mantia GL et al. The protein stability and transcriptional activity of p63alpha are regulated by SUMO-1 conjugation. Cell Cycle 2005; 4: 183–190.

19. Minty A, Dumont X, Kaghad M, Caput D. Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO- 1 interaction motif. J Biol Chem 2000; 275: 36316–36323.

20. Coutandin D, Lo¨ hr F, Niesen F, Ikeya T, Weber T, Scha¨ fer B et al. Conformational stability and activity of p73 require a second helix in the tetramerization domain. Cell Death Differ 2009; 16: 1582–1589.

21. Ross S, Best JL, Zon LI, Gill G. SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol Cell 2002; 10: 831–842.

22. Gill G. Something about SUMO inhibits transcription. Curr Opin Genet Dev 2005; 15: 536–541.

23. Melchior F, Schergaut M, Pichler A. SUMO: ligases, isopeptidases and nuclear pores. Trends Biochem Sci 2003; 28: 612–618.

24. Muller S, Hoege C, Pyrowolakis G, Jentsch S. SUMO, ubiquitin’s mysterious cousin. Nat Rev Mol Cell Biol 2001; 2: 202–210.

25. Lyst MJ, Stancheva I. A role for SUMO modification in transcriptional repression and activation. Biochem Soc Trans 2007; 35: 1389–1392.

26. Ying H, Chang DL, Zheng H, McKeon F, Xiao ZX. DNA-binding and transactivation activities are essential for TAp63 protein degradation. Mol Cell Biol 2005; 25: 6154–6164.

27. Johnson ES, Gupta AA. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 2001; 106: 735–744.

28. Pichler A, Gast A, Seeler JS, Dejean A, Melchior F. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 2002; 108: 109–120.

29. Mahajan R, Delphin C, Guan T, Gerace L, Melchior F. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 1997; 88: 97–107.

30. Nicholls CD, McLure KG, Shields MA, Lee PW. Biogenesis of p53 involves cotranslational dimerization of monomers and posttranslational dimerization of dimers. Implications on the dominant negative effect. J Biol Chem 2002; 277: 12937–12945.

31. Davison TS, Nie X, Ma W, Lin Y, Kay C, Benchimol S et al. Structure and functionality of a designed p53 dimer. J Mol Biol 2001; 307: 605–617.

32. Calabro V, Mansueto G, Parisi T, Vivo M, Calogero RA, La Mantia G. The human MDM2 oncoprotein increases the transcriptional activity and the protein level of the p53 homolog p63. J Biol Chem 2002; 277: 2674–2681.

33. Kadakia M, Slader C, Berberich SJ. Regulation of p63 function by Mdm2 and MdmX. DNA Cell Biol 2001; 20: 321–330.

34. Kojima T, Ikawa Y, Katoh I. Analysis of molecular interactions of the p53-family p51(p63) gene products in a yeast two-hybrid system: homotypic and heterotypic interactions and association with p53-regulatory factors. Biochem Biophys Res Commun 2001; 281: 1170–1175.

35. Little NA, Jochemsen AG. Hdmx and Mdm2 can repress transcription activation by p53 but not by p63. Oncogene 2001; 20: 4576–4580.

36. Wang X, Arooz T, Siu WY, Chiu CH, Lau A, Yamashita K et al. MDM2 and MDMX can interact differently with ARF and members of the p53 family. FEBS Lett 2001; 490: 202–208.

37. Rossi M, Aqeilan RI, Neale M, Candi E, Salomoni P, Knight RA et al. The E3 ubiquitin ligase Itch controls the protein stability of p63. Proc Natl Acad Sci USA 2006; 103: 12753–12758.

38. Rossi M, De Simone M, Pollice A, Santoro R, La Mantia G, Guerrini L et al. Itch/AIP4 associates with and promotes p63 protein degradation. Cell Cycle 2006; 5: 1816–1822.

39. Reid G, Hubner MR, Metivier R, Brand H, Denger S, Manu D et al. Cyclic, proteasomemediated turnover of unliganded and liganded ERalpha on responsive promoters is an integral feature of estrogen signaling. Mol Cell 2003; 11: 695–707.

40. Rinne T, Bolat E, Meijer R, Scheffer H, Bokhoven Hv. Spectrum of p63 mutations in a selected patient cohort affected with ankyloblepharon-ectodermal defects-cleft lip/palate syndrome (AEC). Am J Med Genet Part A 2009; 149: 1948–1951.

41. Duijf PH, van Bokhoven H, Brunner HG. Pathogenesis of split-hand/split-foot malformation. Hum Mol Genet 2003; 12 (Spec No 1): R51–R60.

Прочитано 2471 раз
Оцените материал
(0 голосов)
Опубликовано в СТАТЬИ
Авторизуйтесь, чтобы получить возможность оставлять комментарии

ПОДПИШИТЕСЬ НА НОВОСТИ

Управление научных исследований СПбГТИ (ТУ)

Горячие новости

Приборное оснащение лаборатории

Rambler's Top100
//'+ 'Рейтинг@Mail.ru<\/a><\/p>');})(window,navigator,document);//]]>